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ERRATA

Page 1, line 4, insert between "...on air pollution." and "Our

treatment is...." the following:

For example, it is clear from the experimental work of Giauque

et al.' 3 and the theoretical calculations of Heist and Reiss 14 that

the free energy of sulfuric acid-water mixtures involve six distinct

hydrates and each of these should be considered as a separate

component in calculating the rate of nucleation of sulfuric

acid-water droplets in polluted air.

Page 5, line 3, replacing sentence "Thus,...composition." with:

Thus, if we look upon the AG surface in terms of "hills and

valleys", then a "streambed leading to the top of the pass" would

correspond to the locus of points (y,0,...,O) .

Page 6, Eq. (9) should read:

SU..U = = U.U (9)
ij v : iv ji vSJ J

Page 6, replacing line below Eq. (9) through line above Eq. (1l) with:

Thus, U-1 = Uij . Eqs. (7) and (8) can then be combined into the
one relation,

one relation,



Errata-2

U_1( 82 AG ) u =Q .
iu an n vj i 1"

uv U v

Multiplying this relation by Uki , summing over k , and making

use of Eq. (9), we obtain

a2AG

[( G ) - Q6 ]U = 0 . (10)
V ankanv c kv vj

Thus, the Qj are the eigenvalues and the Uvj are the eigenvectors

of the Hermitian matrix II(a2AG/ankanV)Cl . The specification of

the Uvj and the Qj are completed by requiring that Qi be

negative. The Jacobi method15 [where the matrix is transformed to

diagonal form by.a sequence of plane rotations] is probably the most

efficient procedure for computing machine calculations since it

determines all of the Q and Uvj simultaneously. Otherwise,

one might determine the Qj as the solution to the secular equation

( 2AG

ankanv c  kv

and then, for each j , solve Eq. (11) by the familiar method of

elimination.

Thus, if one makes a many-dimensional Taylor series expansion

in the vicinity of the point (ylc,0,.o.,0) ,



Errata-3

Page 7, insert below Eq. (13) with:

Here Ij Nj is an approximation to the concentration of molecules

in the mother phase.

Page.9, line above Eq. (20) should read:

approximated by derivatives 16 so that

Page 10, 3rd line from bottom of page to end of page should read:

concentration and is sometimes a poor approximation when the nuclei

are formed by very rapid chilling such as occurs when gases are

expanded by flow through a nozzle.

Page 15, line below Eq. (39), replace Ref.(5) by Ref. (12).

Page 16, 2 lines after Eq. (44), parentheses should be put around

"1" and "12".

Page 16, insert before "Acknowledgements":

Example: Three Components, q = 3

One might expect that for the three-component system, it would

be convenient to express the Uij in terms of the Eulerian angles

(o,,y) . Eq. (8) does provide three relations between these three

angles. I succeeded in separating the variables so as to get a

single transcendental equation for y . However, this equation was



Errata-4

sufficiently complicated that there is no advantage in treating the

three-component system as a special case.

Page 18, add the following references after Ref. (12):

13. W. F. Giauque, J. E. Kunzler, and E. W. Hornung, J. Am. Chem.

Soc. 78, 5482 (1956).

14. R. H. Heist and H. Reiss, J. Chem. Phys. (submitted Feb. 1974).

15. For a three-component system, the H.P. 65 mini-computer has a

pre-programmed magnetic card for getting both the eigenvalues

and eigenvectors. For larger systems, see J. H. Wilkinson,

The Algebraic Eigenvalue Problem (Clarendon Press, Oxford,

1965), p. 266.

16. Some of the approximations arising from the replacement of the

finite differences by derivatives is considered by E. R. Cohen,

J. Stat. Phys. 2, 147 (1970).
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ABSTRACT

Reiss's classical treatment of the kinetics of homogeneous

nucleation in a system containing two chemical components is extended

to many-component systems. The formulation is analogous to the

pseudo-stationary state theory of chemical reaction rates with the

free energy as a function of the composition of the embryo taking the

place of the potential energy as a function of interatomic distances.



The present treatment is a generalization to many components of

Howard Reiss's classical treatment of the kinetics of homogeneous

nucleation in a binary system. 1 This generalization is needed in

connection with research on air pollution. Our treatment is

restricted to the formation of critical nuclei by the addition of

one molecule at a time. If some particular clusters are relatively

stable and occur in sufficient concentration that their interactions

with other clusters play an important role in the kinetics, then

these particular clusters should be listed as separate components.

In this way, our treatment becomes more generally applicable.

Since all of the basic ideas are contained in Reiss's

publication, very little explanation of the physics is required

here. The rate of nucleation, I , is determined by a pseudo-

stationary state procedure which is reminiscent of the Eyring

Theory of Absolute Rates. Or, better yet, it is reminiscent of

Keck's Variational Theory of Reaction Rates. 8 Here the critical

embryo (indicated by a subscript "c") corresponds to the "activated

state;" the composition of an embryo (containing nl,...,nq molecules

of components l,...,q respectively)corresponds to the interatomic

separations;'and AG(n1,...,nq) , the Gibbs free energy of formation

of the embryo,corresponds to -the potential energy surface.

Our objective is to provide a simple expression for the rate of

nucleation. There are many ways in which our formalism could be

improved at the-expense of simplicity. It would be easy to: (1) use
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finite differences in place of derivatives; (2) determine the free

energy in the critical nucleation region through the third order;

and (3) correct the rate of nucleation for the curvature of the

reaction path. However, it would be difficult to modify the

formulation so as to take into account the nonequilibrium effects

such as: 2-7  (1) time lag in the development of the critical

nuclei; (2) the heating of the nuclei due to the exothermic energies

of condensation and the coolingdue to evaporation and heat transfers;

(3) diffusion of molecules on the surface of nuclei to get into more

favorableconfigurations;-andoscillations of the nuclei. In spite

of its crudeness, this type of classical nucleation kinetics agrees
remarkably well with experimental results. This agreement is due, of

course, to the fact that the nucleation occurs so suddenly as a

function of the saturation that a factor as large as 100 or 1000 in

the rate of nucleation is hardly noticeable.

I. THERMODYNAMICS CONSIDERATIONS

For an embryo of arbitrary size and composition, the free energy

of formation is

AG(n 1,...,n q) = G(n1 ,...,nq) - nj"jo(n 1 ,...,n q ) (1)q q j jo1



where the pi (n1,...,n ) is the chemical potential per molecule of

the j-th component in the-mother phase outside of the embryo calculated

atthe ambient pressure-and-temperature, Po and To ,assuming that

this mother phase had-the same composition as the embryo. The free

energy of the embryo, G(nl,...,nq) can be determined a priori by

combining quantum mechanical, statistical mechanical; and Monte Carlo

techniques; or, the free-energy can be approximated in terms of the

properties of-the bulk material. 9-11 The simplest approximation is

the one-which-is usually used in the--classical theory of nucleation,1

G(n,...,n q) = YSn  + nj j (nl,...,n q) (2)

Here jn(n1,...,n ) is the chemical potential per molecule of the

j-th component of the bulk material having the same phase and

composition as the embryo, and having the same-pressure as the inside

of the embryo; y is the surface tension corresponding to a plane

boundary which has, on one side the-bulk material having the same

phase and composition as the nucleus--on the other side is material

having the-same phase and composition as the system before

nucleation;-and.finally, Sn is the-surface area-of the embryo

which can be approximated byl

Sn = (4w)3 [3 j nj jn(n1,...,nq)] /3 (3)
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where jn (n1,...,n ) is the partial molal volume per molecule of

the bulk material having the same phase and composition as the embryo.

We assume that initially there are N. (j = 1,...,q) single

molecules per unit volume in the mother phase. During the

nucleation period; but after the-initial transients have disappeared,

a pseudo-stationary concentration N(n1,...,nq ) of embryos is

maintained by the chemical kinetics. Furthermore, we assume that

the nucleation period is sufficiently short that the concentration

of single molecules is not appreciably depleted; Following Reiss's

thermodynamical arguments, the concentration of embryos in

thermodynamical equilibrium with these-single molecules is1

Ne(ni,...,n ) = ( Nj) exp[-(kT)-lAG(nl,...,nq)] (4)

Instead of expressing the composition of an embryo in terms of

its components (ni,...,n q) , we can express it in terms of a new

set of components (Y1,...,Yq) where yj corresponds to a "rotation"

of the n.-coordinate axes. Thus,

n = i=Uji or =  Uj..n (5)

Here U is a unitary matrix which varies slowly with -the total number

of molecules in the embryo, n = n= "j . In keeping with the

reaction kinetics analogy, we define- yl to correspond to the
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distance along the "reaction path". The coordinates Y2,...,Yq then

correspond-to the internal (vibrational and-rotational) modes

orthogonal-to-the reaction-path. Thus, yl might be defined as a

locus-of-points-for which-the-value of AG , corresponding to the

composition- (yl,O,...,O) , is a minimum when compared to AG for a

nucleus having the same-number of molecules but a slightly different

composition. It is this definition of yl which makes U vary

slowly with yl

However, the principal concern of the theory of nucleation is

the embryos whose composition is close to that of the critical

embryo. The critical embryo can be defined as the composition

corresponding-to-a saddle-point-on the-free -energy surface. If there

is no saddle-point, -special- techniques are required (analogous to the

treatment of three-body atomic recombination-reactions) which are

beyond the-scope-of our present paper.

Since the-critical embryo-(designated -by a subscript "c") is a

-saddle-point;-all of-the first derivatives of AG vanish,

aAG aaGay) = 0 or (n -)c = 0, j=l,...,q (6)

Furthermore, we can define U at the saddle-point so that

a2aG = Q 1ij i and j = 1,...,q (7)
@Yi YjC ' ,"



where QI is negative and all of the Q2,... ,Q are positive. Thus,

the unitary matrix satisfies the conditions

0 =  v UuiUv(2AG a2c AG
Ou ) i / j (8)

uv Yiu CYj

Of course, U satisfies the unitary conditions

Uij jv = i UjiUjv (9)

Thus, U71 = U . The specification of the U is then

completed by requiring that of the q constants

a2AG

Qi = j i U i(.. ' ) c  (10)
i 2 *Wvv anjan cj,v v

the Q, is the negative one. Any residual indeterminancy in the U

is inconsequential for our purposes.

Thus in the vicinity of the critical embryo,

q
AG = AG + (y )2 + + .. (11)

i=2

Substituting Eq. (11) into Eq. (4), the equilibrium population of

the embryo in the critical region is
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q
Ne = Nec exp[-(2kT)- {Q1(yl - Ylc)2 Qi + ...}] (12)

i=2

where the equilibrium concentration of critical nuclei is

Nec = ( Nj) exp[-AG c/kT] (13)

II. PSEUDO-STATIONARY TREATMENT OF THE KINETICS

We assume that each of the embryos A(nl,...,nj,...,n q) of

species (n1 ,...,n ,...,n ) can react with single molecules Aj of

species j to form nuclei of species (nz,...,n +l,...,n) ,

kj(n,...,nq )

A(nl,...,nj,...,n q) + Aj A(n,...,n+1,...,n) (14)
k .(nA,...,n()

The reaction rates k. can be expressed in the form

Njkj(nl,...,n ) = a j S n(nz,...,n ) (15)

where Sn is the surface area of the nucleus, aj is the probability

that a molecule of j hitting the surface will stick, and Bj is

the rate at which a molecule of j hits a unit surface area of the

nucleus. For example, if the mother phase is considered to be a

perfect gas,
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8j = pj(2mjkT)- /2

where pj is the partial pressure of j in the mother phase and

mj is the mass of a molecule of j. Frequently, a is taken to

be unity.

The net rate of increase of species (nl,...,n +l,...,nq) by

means of the reaction given by Eq. (14) is

Ij(n1,...,nq) = k (n,...,nq )NN(n1,...,nj,...,nq )

(16)

- kj(nl,...,n )N(nl,...,nj+l1,...,n )

But since

kj(n 1 ,...,n )N (ni,..,n ) =

kj(nl,...,nq)NjN e(n ,...,nj,...,n q )  ,

if we define the ratios

f(n1 ,...,nq) = N(nz,...,nq)/Ne(nz,...,n q) , (17)

then Eq. (16) becomes
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Ij(nl,...,nq ) = kj(n,,...n ,nq)NN (n,...,n ,...,n )

(18)
x [f(nl,...,n ,.. ,nq) - f(nl,...,n +l,...,n q)]

We can interpret Ij as the flux in the direction of increasing j

of embryo having a fixed composition in all of the components

except j . Thus, the net rate of increase of embryos of species

(nl,...,n ) by means of all reactions with single molecules is

DN(nl,...,n q

at j [lj(nl,...,n j-1,...,n q - I (n ,...,n ...,nq)]
j=l q

(19)

For large nuclei, the finite differences in Eqs. (18) and (19) can be

approximated by derivatives so that

I = -kjNjN e(af/anj) (20)

and

q

aN/at =- (aIj/an.) (21)
j=l

If now we change the variables from the nj to the yi , then

Eq. (21) becomes
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q q q

aN/at = - Ui(aIj/ayi) = (aJi/ayi) (22)
i=l1 =1 i=l

where we have defined the functions Ji making use of Eqs. (16) and

(20) so that

q q

1i Z U: I = SN Y Biu( u , i = l,...,q (23)
j=l n eu=l

in which we have defined

q

iu U i a U (24)
j=l 1i j j ju

The Ji can be interpreted as the flux in the direction of increasing

Yi of embryo with fixed composition in all of the y's except yi

This is the point where we make two key assumptions:

(1) During the nucleation period, the concentration of each

species of embryo remains in a pseudo-stationary state so that

aN/at = 0 and Eq. (22) becomes

i (Ji/ayi) = 0 (25)
i=l

This ignores the initial induction period for the building up of the

concentration and is a poor approximation when the nuclei are formed

by very rapid chilling such as sometimes occurs when gases are expanded

by flow through a nozzle.



(2) Since yl corresponds to the reaction path, the only

nonvanishing component of the flux is in the yl direction. Thus,

J2 = 0 , J3 
= 0 , ... , J = 0 (26)

Eq. (23) with i = 2,...,q forms a set of (q-l) linear

equations for the (q-l) unknown variables af/ay,...,af/ayq ,

-B i(af/ayl) = Bi2(af/ay 2) + ... + Biq(af/y q ) , i = 2,...q

(27)

which has as its solution

u+1 821 B22  B2,U-1 2,U+1 2q
af/ay ( (af/ayl) i (28)

Bq1 Bq2 * Bq,u-1 q,u+1 . Bqq

where D2  is the determinant

B2 2 ."' 2q
D2 = (29)

Bq2 " Bqq
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Substituting Eq. (28) into Eq. (23) with i = 1 , we obtain

J1 = SnNe(D1/D2)(af/ayl) (30)

where DI is the determinant

B11, Biq (31)
01 = (31)

Bq1 "'Bqq

Eq. (30) can then be integrated along the reaction path yl to give

f1 D2U
f = fl- i 2 e dyl (32)

1

Here f, J, and Ne correspond to the composition Yl,...,yq and f,

corresponds to the composition yl = 1 with the values of

Y2, .. ,Yq the same as for the f, J, and Ne
In order to proceed with the analysis, it is necessary to make

three additional assumptions:

(1) For very small embryos corresponding to y1 = 1 , the

concentrations of the embryos are very nearly in equilibrium with

the concentrations of the single molecules. Thus, to a good

approximation fl = 1
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(2) For very large embryo corresponding to yl >> y1c the

concentration of embryo is negligible so that f = N/Ne = 0 . This

is reasonable.

(3) Since Ne becomes very small and varies very rapidly in

the neighborhood of the critical point, most of the contribution to

the integral in Eq. (32) comes from this region. Furthermore, the

slowly varying functions D2, D1, and J1 may be assigned their

values corresponding to yl = y1c and taken outside of the integral

sign. Actually, this is not a good assumption since the free

energy surface in the vicinity of the saddle-point is usually

slowly (instead of rapidly) varying, but fortunately this assumption.

does not make any large error in the predicted rate of nucleation.

With these assumptions and the use of Eq. (12), Eq. (32) becomes

q

1/J = D2[DSnNec]-1 exp[(2kT)-  I QiY2]
i=2

y>>yc (33)

Ix exp[(2kT)-1 Q(y l - ylc) 2]dy(

The rate of nucleation is then given by

J = ... J dy2 ... dyq (34)

Here the range of -c to - is suppose to imply the full range of

the coordinates Y2 ,--.,Yq holding yl = y1c. If we now add the



further assumption that SnD0 /D2 varies slowly as compared to ti~

exp[-(2kT)- Qil] , then the factor SnDI/D 2 can be brought outside

the integrations. Furthermore, since (2kT)-' QI is suppose to be

negative and large in magnitude, to a good approximation

y1> >y7c exp[(2kT)-. QI(y] - ylc)2]dy = [-2nkT/Q1 IA (35)

1

and

exp[-(2kT)-1 Qiy?]dyi = [2nkT/Qi]/2 (36)

Thus, the rate of nucleation is

S =(21kT)(q-2)/2 [NeSnD/D2]c [-QI]/2 [Q, ,Qq] /2  (37)

Example: Two Components, q = 2 o

Our present treatment agrees with the two-component nucleation

formulation of Reiss i (and Mirabel and Katz's application of Reiss's

method to sulphuric acid or nitric acid nucleation1
2). For the two-

component nucleation, U is the two-dimensional rotation matrix with

U11 = cosO = U22 and U2 1 = sine = -U12 (38)
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Eq. (8) then becomes

tan(2) = 2( 2,G a2AG a2AG C (39)
antan(2an2) = 2(c/a -c (n)c] (39)

in agreement with Eq. (8c) of Ref. (5). Also, from Eq. (10),

Q1 = (AG2)G cos2€ + 2( an2G ) sine cos + (a2AG) sin 2

(40)

a2AG a2AG a2aG
2 = 12AG) sin 2p - 2( a2AG ) sinp cos + (2AG) COS2

an 12 c anjan 2 cc cs n2 c

(41)

There are two solutions for 0 which satisfy Eq. (39). We choose

the root such that Q1  is negative and Q2  is positive. Then Eqs.

(40) and (41) are in agreement with Eqs. (8a) and (8b) of Ref. 12

where P = Q1 and Q = Q2

Now, using Eqs. (24) and (38), it follows that

B11 = alB1 cos 2q + a2B 2 sin 2  ,

B2 2  = a11 sin 2p + 2 2 cos24 = 02 (42)

B12 = [-al + a2B2]sinO cos = B21
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And so

D = a Bcla2B 2  (43)

Thus, the rate of nucleation as given by Eq. (37) is

. (a11a2B2S n exp[-AG/kT] Q
J = (N + N2)[l in2 + 2 2 cos2 c (-  2  (44)

Here Eq. (44) agrees with the corresponding Eq. (87) of Ref. 1 and

Eq. (6) of Ref. 12.
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